

DG-3121

Third Year B. Sc. (Sem. V) Examination March/April - 2016

Physics: Paper - XI

(PHY-5011 : Numerical Analysis & Materials Science) (New Course)

Time: 2 Hours] [Total Marks: 50

Instructions:

(1)

	Cast Na .
નીચે દર્શાવેલ 👉 નિશાનીવાળી વિગતો ઉત્તરવહી પર અવશ્ય લખવી. Fillup strictly the details of 👉 signs on your answer book.	Seat No.:
Name of the Examination :	
B. Sc. (Sem. V)	
Name of the Subject :	
Physics - XI (PHY-5011 : Numerical Anal. & Material Sci.) (New)	
Subject Code No.: 3 1 2 1 Section No. (1, 2,): Nil	Student's Signature

- (2) Draw neat diagram wherever necessary.
- (3) Symbols used in the paper have their usual meaning.
- (4) Figures to the right indicate full marks of the question.
- (5) Scientific calculator may be used.

1. Answer the following questions in brief:

- (1) What are significant digits? How many significant figures are there in the number 0.00192?
- (2) What is an algebraic equation?
- (3) Prove that $\mathbf{E}\Delta = \Delta \mathbf{E}$, where Δ is the forward difference operator and E is the shift operator.
- (4) Define a backward difference operator (∇).
- (5) State the classical law of Wiedemann and Franz.
- (6) State Curie's law for paramagnetic substance.

(08)

(7) What is Meissner effec	(7)	What	is	Meissner	effec
----------------------------	-----	------	----	----------	-------

(8) What are Cooper - pairs? What is the essential condition for two electrons to form a Cooper – pair?

2 (a) Attempt any one of the following in details: (10)

- (i) Explain the Regula Falsi method to obtain a real root of an equation f(x) = 0
- (ii) Discuss and obtain the Newton's forward interpolation formula.

(04)

- (b) Attempt any one of the following: (04) (i) Find a real root of the equation $x^3 + x^2 + x + 7 = 0$ using the bisection method, correct to three significant figures.
 - (ii) Using the method of separation of symbols, show that:

$$e^{x}(U_{0}+x\Delta U_{0}+\frac{x^{2}}{2!}\Delta^{2}U_{0}+\dots)=U_{0}+U_{1}x+U_{2}\frac{x^{2}}{2!}$$

3 (a) Attempt any one of the following in details: (10)

- (i) Discuss the classical theory of diamagnetism and obtain the equation $\omega = -\frac{eB}{2m} \pm \sqrt{{\omega_0}^2 + \frac{e^2 B^2}{4m^2}}$ for the angular frequency of an electron in an atom in the presence of an external magnetic field.
- (ii) Describe the classical theory of electric conduction and derive an expression for electrical resistivity $\rho = \frac{m}{ne^2\tau}$, using Ohm's law.

(b) Attempt any one of the following: (04)

- (i) Calculate the mean free path of an electron in a Cu wire if its resistivity at 20° C is $1.69 \times 10^{-8} \Omega$ -m and the concentration of electrons is $8.5 \times 10^{-28} \text{ m}^{-3}$. (m_e = $9.11 \times 10^{-31} \text{ kg}$ e = $1.6 \times 10^{-19} \text{ C}$ $K_B = 1.38 \times 10^{-23} SI$)
- (ii) Calculate the Lorentz number (L) for Cu at 20 ^{0}C , if its electrical resistivity and thermal conductivity are 1.72 x 10 $^{-8}$ $\Omega\text{-m}$ and 386 Wm $^{-1}$ K $^{-1}$ respectively.

[300]

Discuss any two of the following in details: (14)

- (i) The forward difference operator Δ , Δ^2 and Δ^3 .
- (ii) Detection of errors by use of difference tables.
- (iii) Weiss theory of paramagnetism.
- (iv)Important properties of a superconductor.